Regular and Chaotic Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Regul. Chaotic Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Regular and Chaotic Dynamics, 2000, том 5, выпуск 2, страницы 225–226
DOI: https://doi.org/10.1070/RD2000v005n02ABEH000145
(Mi rcd876)
 

Эта публикация цитируется в 5 научных статьях (всего в 5 статьях)

On the Nonintegrability of a Dynamical System of the General Relativity

S. L. Ziglin

Institute of Radioengineering and Electronics of RAS, Mokhovaya Str., 11, 103907, Moscow, Russia
Аннотация: The absence of an additional meromorphic first integral of a Hamiltonian system with two degrees of freedom emerging in describing of the Friedman cosmological models with the coupled scalar field is proved.
Поступила в редакцию: 03.04.2000
Реферативные базы данных:
Тип публикации: Статья
MSC: 32S70, 34A20
Язык публикации: английский
Образец цитирования: S. L. Ziglin, “On the Nonintegrability of a Dynamical System of the General Relativity”, Regul. Chaotic Dyn., 5:2 (2000), 225–226
Цитирование в формате AMSBIB
\RBibitem{Zig00}
\by S. L. Ziglin
\paper On the Nonintegrability of a Dynamical System of the General Relativity
\jour Regul. Chaotic Dyn.
\yr 2000
\vol 5
\issue 2
\pages 225--226
\mathnet{http://mi.mathnet.ru/rcd876}
\crossref{https://doi.org/10.1070/RD2000v005n02ABEH000145}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1780714}
\zmath{https://zbmath.org/?q=an:0958.70014}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/rcd876
  • https://www.mathnet.ru/rus/rcd/v5/i2/p225
  • Эта публикация цитируется в следующих 5 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Статистика просмотров:
    Страница аннотации:60
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024