Regular and Chaotic Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Regul. Chaotic Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Regular and Chaotic Dynamics, 2000, том 5, выпуск 2, страницы 219–224
DOI: https://doi.org/10.1070/RD2000v005n02ABEH000144
(Mi rcd875)
 

Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)

On Construction of the Effective Potential in Singular Cases

A. V. Karapetyan

Faculty of Mechanics and Mathematics, Department of Theoretical Mechanics, Moscow State University, 119899, Moscow, Russia
Аннотация: It is known that the problem of an investigation of invariant sets (in particular stationary motions) of mechanical systems with symmetries can be reduced to the problem of the analysis of the effective potential [1-11]. The effective potential represents the minimum of the total mechanical energy with respect to quasivelocities on fixed levels of Noether's integrals corresponding to symmetries of the system. The effective potential is a function in the configuration space depending on constants of Noether's integrals. This function is defined in such points of the configuration space where Noether's integrals independent and can have singularities at some points where these integrals are dependent.
Поступила в редакцию: 07.12.1999
Реферативные базы данных:
Тип публикации: Статья
MSC: 58F36
Язык публикации: английский
Образец цитирования: A. V. Karapetyan, “On Construction of the Effective Potential in Singular Cases”, Regul. Chaotic Dyn., 5:2 (2000), 219–224
Цитирование в формате AMSBIB
\RBibitem{Kar00}
\by A. V. Karapetyan
\paper On Construction of the Effective Potential in Singular Cases
\jour Regul. Chaotic Dyn.
\yr 2000
\vol 5
\issue 2
\pages 219--224
\mathnet{http://mi.mathnet.ru/rcd875}
\crossref{https://doi.org/10.1070/RD2000v005n02ABEH000144}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1780713}
\zmath{https://zbmath.org/?q=an:1004.70014}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/rcd875
  • https://www.mathnet.ru/rus/rcd/v5/i2/p219
  • Эта публикация цитируется в следующих 4 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024