|
Эта публикация цитируется в 6 научных статьях (всего в 6 статьях)
Infinite Number of Homoclinic Orbits to Hyperbolic Invariant Tori of Hamiltonian Systems
S. V. Bolotin Department of Mathematics and Mechanics,
Moscow State University, Vorob'ievy Gory,
119899, Moscow, Russia
Аннотация:
A time-periodic Hamiltonian system on a cotangent bundle of a compact manifold with Hamiltonian strictly convex and superlinear in the momentum is studied. A hyperbolic Diophantine nondegenerate invariant torus $N$ is said to be minimal if it is a Peierls set in the sense of the Aubry–Mather theory. We prove that $N$ has an infinite number of homoclinic orbits. For any family of homoclinic orbits the first and the last intersection point with the boundary of a tubular neighborhood $U$ of $N$ define sets in $U$. If there exists a compact family of minimal homoclinics defining contractible sets in $U$, we obtain an infinite number of multibump homoclinic, periodic and chaotic orbits. The proof is based on a combination of variational methods of Mather and a generalization of Shilnikov's lemma.
Поступила в редакцию: 01.03.2000
Образец цитирования:
S. V. Bolotin, “Infinite Number of Homoclinic Orbits to Hyperbolic Invariant Tori of Hamiltonian Systems”, Regul. Chaotic Dyn., 5:2 (2000), 139–156
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd868 https://www.mathnet.ru/rus/rcd/v5/i2/p139
|
Статистика просмотров: |
Страница аннотации: | 104 |
|