|
Эта публикация цитируется в 9 научных статьях (всего в 9 статьях)
Integrable Third-Order Mappings and their Growth Properties
S. Lafortunea, A. S. Carsteab, A. Ramanib, B. Grammaticosc, Y. Ohtad a Department of Mathematics,
University of Arizona,
85721 Tucson AZ, USA
b CPT, Ecole Polytechnique,
CNRS, UMR 7644,
91128 Palaiseau, France
c GMPIB, Universitè Paris VII,
Tour 24-14, 5e étage, case 7021,
75251 Paris, France
d Information Engineering,
Hiroshima University,
Higashi-Hiroshima 739-8527, Japan
Аннотация:
We study the degree growth of the iterates of the initial conditions for a class of third-order integrable mappings which result from the coupling of a discrete Painlevé equation to an homographic mapping. We show that the degree grows like $n^3$. In the special cases where the mapping satisfies the singularity confinement requirement we find a slower, quadratic growth. Finally we present a method for the construction of integrable $N$th-order mappings with degree growth $n^N$.
Поступила в редакцию: 05.08.2001
Образец цитирования:
S. Lafortune, A. S. Carstea, A. Ramani, B. Grammaticos, Y. Ohta, “Integrable Third-Order Mappings and their Growth Properties”, Regul. Chaotic Dyn., 6:4 (2001), 443–448
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd856 https://www.mathnet.ru/rus/rcd/v6/i4/p443
|
Статистика просмотров: |
Страница аннотации: | 80 |
|