Regular and Chaotic Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Regul. Chaotic Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Regular and Chaotic Dynamics, 2016, том 21, выпуск 4, страницы 377–389
DOI: https://doi.org/10.1134/S1560354716040018
(Mi rcd84)
 

Эта публикация цитируется в 15 научных статьях (всего в 15 статьях)

On the Stability of Resonant Rotation of a Symmetric Satellite in an Elliptical Orbit

Boris S. Bardin, Evgeniya A. Chekina

Theoretical Mechanics Department, Faculty of Applied Mathematics and Physics, Moscow Aviation Institute, Volokolamskoe sh. 4, Moscow, 125871 Russia
Список литературы:
Аннотация: We deal with the stability problem of resonant rotation of a symmetric rigid body about its center of mass in an elliptical orbit. The resonant rotation is a planar motion such that the body completes one rotation in absolute space during two orbital revolutions of its center of mass. In [1–3] the stability analysis of the above resonant rotation with respect to planar perturbations has been performed in detail.
In this paper we study the stability of the resonant rotation in an extended formulation taking into account both planar and spatial perturbations. By analyzing linearized equations of perturbed motion, we found eccentricity intervals, where the resonant rotation is unstable. Outside of these intervals a nonlinear stability study has been performed and subintervals of formal stability and stability for most initial data have been found. In addition, the instability of the resonant rotation was established at several eccentricity values corresponding to the third and fourth order resonances.
Our study has also shown that in linear approximation the spatial perturbations have no effect on the stability of the resonant rotation, whereas in a nonlinear system they can lead to its instability at some resonant values of the eccentricity.
Ключевые слова: Hamiltonian system, symplectic map, normal form, resonance, satellite, stability.
Финансовая поддержка Номер гранта
Российский научный фонд 14-21-00068
This work was supported by the grant of the Russian Scientific Foundation (project No. 14-21-00068) at the Moscow Aviation Institute (National Research University).
Реферативные базы данных:
Тип публикации: Статья
Язык публикации: английский
Образец цитирования: Boris S. Bardin, Evgeniya A. Chekina, “On the Stability of Resonant Rotation of a Symmetric Satellite in an Elliptical Orbit”, Regul. Chaotic Dyn., 21:4 (2016), 377–389
Цитирование в формате AMSBIB
\RBibitem{BarChe16}
\by Boris~S.~Bardin, Evgeniya~A.~Chekina
\paper On the Stability of Resonant Rotation of a Symmetric Satellite in an Elliptical Orbit
\jour Regul. Chaotic Dyn.
\yr 2016
\vol 21
\issue 4
\pages 377--389
\mathnet{http://mi.mathnet.ru/rcd84}
\crossref{https://doi.org/10.1134/S1560354716040018}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000380679700001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84980340452}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/rcd84
  • https://www.mathnet.ru/rus/rcd/v21/i4/p377
  • Эта публикация цитируется в следующих 15 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024