|
Эта публикация цитируется в 6 научных статьях (всего в 6 статьях)
Multi-particle Dynamical Systems and Polynomials
Maria V. Demina, Nikolai A. Kudryashov National Research Nuclear University “MEPhI”, Kashirskoe sh. 31, Moscow, 115409, Russia
Аннотация:
Polynomial dynamical systems describing interacting particles in the plane are studied. A method replacing integration of a polynomial multi-particle dynamical system by finding polynomial solutions of partial differential equations is introduced. The method enables one to integrate a wide class of polynomial multi-particle dynamical systems. The general solutions of certain dynamical systems related to linear second-order partial differential equations are found. As a by-product of our results, new families of orthogonal polynomials are derived.
Ключевые слова:
multi-particle dynamical systems, polynomial solutions of partial differential equations, orthogonal polynomials.
Поступила в редакцию: 11.12.2015 Принята в печать: 06.05.2016
Образец цитирования:
Maria V. Demina, Nikolai A. Kudryashov, “Multi-particle Dynamical Systems and Polynomials”, Regul. Chaotic Dyn., 21:3 (2016), 351–366
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd82 https://www.mathnet.ru/rus/rcd/v21/i3/p351
|
|