|
Эта публикация цитируется в 99 научных статьях (всего в 100 статьях)
Nonholonomic Systems
The rolling motion of a ball on a surface. New integrals and hierarchy of dynamics
A. V. Borisova, I. S. Mamaevb, A. A. Kilinb a Department of Theoretical Mechanic,
Moscow State University, Vorob'ievy Gory,
119899, Moscow, Russia
b Laboratory of Dynamical Chaos and Nonlinearity,
Udmurt State University, Universitetskaya, 1,
426034, Izhevsk, Russia
Аннотация:
The paper is concerned with the problem on rolling of a homogeneous ball on an arbitrary surface. New cases when the problem is solved by quadratures are presented. The paper also indicates a special case when an additional integral and invariant measure exist. Using this case, we obtain a nonholonomic generalization of the Jacobi problem for the inertial motion of a point on an ellipsoid. For a ball rolling, it is also shown that on an arbitrary cylinder in the gravity field the ball's motion is bounded and, on the average, it does not move downwards. All the results of the paper considerably expand the results obtained by E. Routh in XIX century.
Поступила в редакцию: 10.02.2002
Образец цитирования:
A. V. Borisov, I. S. Mamaev, A. A. Kilin, “The rolling motion of a ball on a surface. New integrals and hierarchy of dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 201–219
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd812 https://www.mathnet.ru/rus/rcd/v7/i2/p201
|
Статистика просмотров: |
Страница аннотации: | 261 |
|