Аннотация:
This paper is concerned with the problem of first integrals of the equations of geodesics on two-dimensional surfaces that are rational in the velocities (or momenta). The existence of nontrivial rational integrals with given values of the degrees of the numerator and the denominator is proved using the Cauchy–Kovalevskaya theorem.
Jaume Giné, Dmitry I. Sinelshchikov, “On the geometric and analytical properties of the anharmonic oscillator”, Communications in Nonlinear Science and Numerical Simulation, 131 (2024), 107875
Sergei V. Agapov, Maria V. Demina, “Integrable geodesic flows and metrisable second-order ordinary differential equations”, Journal of Geometry and Physics, 199 (2024), 105168
Sergei Agapov, Vladislav Shubin, “New examples of non-polynomial integrals of two-dimensional geodesic flows
*”, J. Phys. A: Math. Theor., 57:1 (2024), 015204
Sergey I. Agafonov, Thaís G. P. Alves, “Fractional-linear integrals of geodesic flows on surfaces and Nakai's geodesic 4-webs”, Advances in Geometry, 24:2 (2024), 263
А. В. Цыганов, Е. О. Порубов, “Об одном классе квадратичных законов сохранения для уравнений Ньютона в евклидовом пространстве”, ТМФ, 216:2 (2023), 350–382; A. V. Tsiganov, E. O. Porubov, “On a class of quadratic conservation laws for Newton equations in Euclidean space”, Theoret. and Math. Phys., 216:2 (2023), 1209–1237
Sergei Agapov, Alexey Potashnikov, Vladislav Shubin, “Integrable magnetic geodesic flows on 2-surfaces
*”, Nonlinearity, 36:4 (2023), 2128
S. V. Agapov, M. M. Tursunov, “On the Rational Integrals of Two-Dimensional Natural Systems”, Sib Math J, 64:4 (2023), 787
С. В. Агапов, “Неполиномиальные интегралы многомерных геодезических потоков и алгебры Ли”, Сиб. электрон. матем. изв., 19:2 (2022), 1088–1093
Agapov S. Shubin V., “Rational Integrals of 2-Dimensional Geodesic Flows: New Examples”, J. Geom. Phys., 170 (2021), 104389
Nikolay A. Kudryashov, “Lax Pairs and Special Polynomials Associated with Self-similar Reductions of Sawada – Kotera and Kupershmidt Equations”, Regul. Chaotic Dyn., 25:1 (2020), 59–77
С. В. Агапов, “О первых интегралах двумерных геодезических потоков”, Сиб. матем. журн., 61:4 (2020), 721–734; S. V. Agapov, “On first integrals of two-dimensional geodesic flows”, Siberian Math. J., 61:4 (2020), 563–574
С. В. Агапов, “Рациональные интегралы натуральной механической системы на двумерном торе”, Сиб. матем. журн., 61:2 (2020), 255–265; S. V. Agapov, “Rational integrals of a natural mechanical system on the 2-torus”, Siberian Math. J., 61:2 (2020), 199–207
Ю. Ю. Багдерина, “Рациональные интегралы второй степени двумерных уравнений геодезических”, Сиб. электрон. матем. изв., 14 (2017), 33–40
N. V. Denisova, “Polynomial integrals of mechanical systems on a torus with a singular potential”, Dokl. Phys., 62:8 (2017), 397–399
Н. В. Денисова, “О ПОЛИНОМИАЛЬНЫХ ИНТЕГРАЛАХ МЕХАНИЧЕСКИХ СИСТЕМ НА ТОРЕ С?СИНГУЛЯРНЫМ ПОТЕНЦИАЛОМ, “Доклады Академии наук””, Доклады Академии Наук, 2017, № 6, 634
В. В. Козлов, “Полиномиальные законы сохранения для газа Лоренца и газа Больцмана–Гиббса”, УМН, 71:2(428) (2016), 81–120; V. V. Kozlov, “Polynomial conservation laws for the Lorentz gas and the Boltzmann–Gibbs gas”, Russian Math. Surveys, 71:2 (2016), 253–290
Valery V. Kozlov, “On the Extendability of Noether’s Integrals for Orbifolds of Constant Negative Curvature”, Regul. Chaotic Dyn., 21:7-8 (2016), 821–831
A. Aoki, T. Houri, K. Tomoda, “Rational first integrals of geodesic equations and generalised hidden symmetries”, Classical Quantum Gravity, 33:19 (2016), 195003, 12 pp.
B. Kruglikov, V. S. Matveev, “The geodesic flow of a generic metric does not admit nontrivial integrals polynomial in momenta”, Nonlinearity, 29:6 (2016), 1755–1768
M. V. Pavlov, S. P. Tsarev, “On local description of two-dimensional geodesic flows with a polynomial first integral”, J. Phys. A, 49:17 (2016), 175201, 20 pp.