|
Эта публикация цитируется в 5 научных статьях (всего в 5 статьях)
Families of multi-round homoclinic and periodic orbits near a saddle-center equilibrium
O. Yu. Koltsova Dept. of Comput. Math. and Cybernetics,
Nizhny Novgorod State University,
23 Gagarin Ave., 603600 Nizhny Novgorod, Russia
Аннотация:
We consider a real analytic two degrees of freedom Hamiltonian system possessing a homoclinic orbit to a saddle-center equilibrium $p$ (two nonzero real and two nonzero imaginary eigenvalues). We take a two-parameter unfolding for such a system and show that in the case of nonresonance there are countable sets of multi-round homoclinic orbits to $p$. We also find families of periodic orbits, accumulating a the homoclinic orbits.
Поступила в редакцию: 17.12.2002
Образец цитирования:
O. Yu. Koltsova, “Families of multi-round homoclinic and periodic orbits near a saddle-center equilibrium”, Regul. Chaotic Dyn., 8:2 (2003), 191–200
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd776 https://www.mathnet.ru/rus/rcd/v8/i2/p191
|
Статистика просмотров: |
Страница аннотации: | 73 |
|