|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Effective computations in modern dynamics
Sharp upper bounds for splitting of separatrices near a simple resonance
M. Rudnev, V. Ten Department of Mathematics,
University of Bristol, University Walk,
Bristol BS8 1TW, UK
Аннотация:
General theory for the splitting of separatrices near simple resonances of near-Liouville-integrable Hamiltonian systems is developed in the convex real-analytic setting. A generic estimate
$$|\mathfrak{S}_k| \leqslant O(\sqrt{\varepsilon}) \times \exp \biggl[- \biggl \vert k \cdot \biggl(c_1 \frac{\omega}{\sqrt{\varepsilon}} + c_2 \biggl) \biggl \vert -|k| \sigma \biggr], k \in \mathbb{Z}^n \backslash \{0\}$$
is proved for the Fourier coefficients of the splitting distance measure $\mathfrak{S}(\phi), \phi \in \mathbb{T}^n$, describing the intersections of Lagrangian manifolds, asymptotic to invariant $n$-tori, $\varepsilon$ being the perturbation parameter.
The constants $\omega \in \mathbb{R}^n$, $c_1$,$\sigma>0$,$c_2 \in \mathbb{R}^n$ are characteristic of the given problem (the Hamiltonian and the resonance), cannot be improved and can be calculated explicitly, given an example. The theory allows for optimal parameter dependencies in the smallness condition for $\varepsilon$.
Поступила в редакцию: 09.08.2004
Образец цитирования:
M. Rudnev, V. Ten, “Sharp upper bounds for splitting of separatrices near a simple resonance”, Regul. Chaotic Dyn., 9:3 (2004), 299–336
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd748 https://www.mathnet.ru/rus/rcd/v9/i3/p299
|
Статистика просмотров: |
Страница аннотации: | 79 |
|