|
Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)
Bicentennial of C.G. Jacobi
Algebraic closed geodesics on a triaxial ellipsoid
Yu. N. Fedorovab a Department of Mathematics and Mechanics,
Moscow Lomonosov University,
Moscow, 119899, Russia
b Department de Matemàtica I,
Universitat Politecnica de Catalunya,
Barcelona, E-08028 Spain
Аннотация:
We propose a simple method of explicit description of families of closed geodesics on a triaxial ellipsoid $Q$ that are cut out by algebraic surfaces in $\mathbb{R}^3$. Such geodesics are either connected components of real parts of spatial elliptic curves or of rational curves. Our approach is based on elements of the Weierstrass–Poncaré reduction theory for hyperelliptic tangential covers of elliptic curves, the addition law for elliptic functions, and the Moser–Trubowitz isomorphism between geodesics on a quadric and finite-gap solutions of the KdV equation. For the case of 3-fold and 4-fold coverings, some explicit formulas for the cutting algebraic surfaces are provided and some properties of the corresponding geodesics are discussed.
Ключевые слова:
closed geodesics, hyperelliptic curves, hyperelliptic coverings.
Поступила в редакцию: 13.06.2005 Принята в печать: 17.10.2005
Образец цитирования:
Yu. N. Fedorov, “Algebraic closed geodesics on a triaxial ellipsoid”, Regul. Chaotic Dyn., 10:4 (2005), 463–485
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd721 https://www.mathnet.ru/rus/rcd/v10/i4/p463
|
Статистика просмотров: |
Страница аннотации: | 77 |
|