|
Эта публикация цитируется в 5 научных статьях (всего в 5 статьях)
Bicentennial of C.G. Jacobi
Integrability of generalized Jacobi problem
B. S. Bardina, A. J. Maciejewskib, M. Przybylskacd a Faculty of Applied Mathematics,
Moscow Aviation Institute,
4, Volokolamskoe Shosse,
Moscow 125871, Russia
b Institute of Astronomy,
University of Zielona Góra,
50, Podgórna, Zielona Góra PL-65-246, Poland
c Toruń Centre for Astronomy, N. Copernicus University,
11, Gagarina, Toruń; PL-87–100, Poland
d Institut Fourier, UMR 5582 du CNRS,
Université de Grenoble I,
100, rue des Maths, BP 74, 38402 Saint-Martin d'Héres, France
Аннотация:
We consider a point moving in an ellipsoid $a_1 x_1^2 + a_2 x_2^2 + a_3 x_3^2 = 1$ under the influence of a force with quadratic potential $V=\frac{1}{2} (b_1 x_1^2 + b_2 x_2^2 + b_3 x_3^2)$. We prove that the equations of motion of the point are meromorphically integrable if and only if the condition $b_1 (a_2 - a_3) + b_2 (a_3 - a_1) + b_3 (a_1 - a_2) = 0$ is fulfilled.
Ключевые слова:
Jacobi problem, integrability, differential Galois group, monodromy group.
Поступила в редакцию: 28.04.2005 Принята в печать: 26.08.2005
Образец цитирования:
B. S. Bardin, A. J. Maciejewski, M. Przybylska, “Integrability of generalized Jacobi problem”, Regul. Chaotic Dyn., 10:4 (2005), 437–461
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd720 https://www.mathnet.ru/rus/rcd/v10/i4/p437
|
Статистика просмотров: |
Страница аннотации: | 91 |
|