|
Эта публикация цитируется в 6 научных статьях (всего в 6 статьях)
150th anniversary of H. Poincaré
Self containment radius for rotating planar flows, single-signed vortex gas and electron plasma
C. C. Lima, S. M. Assadb a Mathematical Sciences,
Rensselaer Polytechnic Institute,
Troy, NY 12180, USA
b Department of Physics,
National University of Singapore,
2 Science Drive 3, Singapore 117542
Аннотация:
A low temperature relation $R^2 = \Omega \beta / 4 \pi \mu$ between the radius $R$ of a compactly supported 2D vorticity (plasma density) field, the total circulation $\Omega$ (total electron charge) and the ratio $\mu / \beta$ (Larmor frequency), is rigorously derived from a variational Principle of Minimum Energy for 2D Euler dynamics. This relation and the predicted structure of the global minimizers or ground states are in agreement with the radii of the most probable vorticity distributions for a vortex gas of $N$ point vortices in the unbounded plane for a very wide range of temperatures, including $\beta = O(1)$. In view of the fact that the planar vortex gas is representative of many 2D and 2.5D statistical mechanics models for geophysical flows, the Principle of Minimum Energy is expected to provide a useful method for predicting the statistical properties of these models in a wide range of low to moderate temperatures.
Ключевые слова:
rotating planar flows, vortex gas, equilibrium statistical mechanics, ground state.
Поступила в редакцию: 13.10.2004 Принята в печать: 11.05.2005
Образец цитирования:
C. C. Lim, S. M. Assad, “Self containment radius for rotating planar flows, single-signed vortex gas and electron plasma”, Regul. Chaotic Dyn., 10:3 (2005), 239–255
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd708 https://www.mathnet.ru/rus/rcd/v10/i3/p239
|
|