|
Эта публикация цитируется в 8 научных статьях (всего в 8 статьях)
On the Steklov case in rigid body dynamics
A. P. Markeev Institute of Problems in Mechanics,
Russian Academy of Sciences,
101, Vernadsky av., 119526 Moscow, Russia
Аннотация:
We study the motion of a heavy rigid body with a fixed point. The center of mass is located on mean or minor axis of the ellipsoid of inertia, with the moments of inertia satisfying the conditions $B>A>2C$ or $2B>A>B>C$, $A>2C$ as well as the usual triangle inequalities. Under these circumstances the Euler–Poisson equations have the particular periodic solutions mentioned by V. A. Steklov. We examine the problem of the orbital stability of the periodic motions of a rigid body, which correspond to the Steklov solutions.
Ключевые слова:
rigid body dynamics, Euler–Poisson equations, Steklov solutions, orbital stability of the periodic motions.
Поступила в редакцию: 21.09.2004 Принята в печать: 26.01.2005
Образец цитирования:
A. P. Markeev, “On the Steklov case in rigid body dynamics”, Regul. Chaotic Dyn., 10:1 (2005), 81–93
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd698 https://www.mathnet.ru/rus/rcd/v10/i1/p81
|
|