|
Эта публикация цитируется в 8 научных статьях (всего в 8 статьях)
Chaotic burst in the dynamics of $f_{\lambda}(z) = \lambda \frac{\sinh(z)}{z}$
M. Guru Prem Prasad Department of Mathematics,
Indian Institute of Technology Guwahati,
Guwahati 781039, India
Аннотация:
In this paper, a one-parameter family of non-critically finite entire functions $\mathscr{F} \equiv {f_{\lambda}(z) = \lambda f(z) : \lambda \in \mathbb{R} \backslash {0}}$ with $f (z) = \lambda \frac{\sinh(z)}{z}$ is considered and the dynamics of the entire transcendental functions $f_{\lambda} \in \mathscr{F}$ is studied in detail. It is shown that there exists a parameter value $\lambda^{*} > 0$ such that the Julia set of $f_{\lambda}(z) $ is nowhere dense subset for $0<|\lambda| \leqslant \lambda^{*} (\approx 1.104)$. For $|\lambda| > \lambda^{*}$ the set explodes and becomes equal to the extended complex plane. This phenomenon is referred to as a chaotic burst in the dynamics of the functions $f_{\lambda}$ in the one-parameter family $\mathscr{F}$.
Ключевые слова:
Fatou sets, Julia sets and Chaotic Burst.
Поступила в редакцию: 14.07.2004 Принята в печать: 08.12.2004
Образец цитирования:
M. Guru Prem Prasad, “Chaotic burst in the dynamics of $f_{\lambda}(z) = \lambda \frac{\sinh(z)}{z}$”, Regul. Chaotic Dyn., 10:1 (2005), 71–80
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd697 https://www.mathnet.ru/rus/rcd/v10/i1/p71
|
|