|
Эта публикация цитируется в 10 научных статьях (всего в 10 статьях)
Point vortices on a rotating sphere
F. Laurent-Polz Institut Non Linéaire de Nice, Université de Nice, 1361 route des lucioles, 06560 Valbonne, France
Аннотация:
We study the dynamics of $N$ point vortices on a rotating sphere. The Hamiltonian system becomes infinite dimensional due to the non-uniform background vorticity coming from the Coriolis force. We prove that a relative equilibrium formed of latitudinal rings of identical vortices for the non-rotating sphere persists to be a relative equilibrium when the sphere rotates. We study the nonlinear stability of a polygon of planar point vortices on a rotating plane in order to approximate the corresponding relative equilibrium on the rotating sphere when the ring is close to the pole. We then perform the same study for geostrophic vortices. To end, we compare our results to the observations on the southern hemisphere atmospheric circulation.
Ключевые слова:
point vortices, rotating sphere, relative equilibria, nonlinear stability, planar vortices, geostrophic vortices, Southern Hemisphere Circulation.
Поступила в редакцию: 06.08.2004 Принята в печать: 09.12.2004
Образец цитирования:
F. Laurent-Polz, “Point vortices on a rotating sphere”, Regul. Chaotic Dyn., 10:1 (2005), 39–58
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd695 https://www.mathnet.ru/rus/rcd/v10/i1/p39
|
|