|
Эта публикация цитируется в 6 научных статьях (всего в 6 статьях)
Non-degenerate energy surfaces of rigid body in two constant fields
M. P. Kharlamova, D. B. Zotevb a Volgograd Academy of Public Administration,
8, Gagarina St.,
400131, Volgograd, Russia
b Volgograd State Technical University,
128, Lenina St.,
400131, Volgograd, Russia
Аннотация:
The problem of motion of a rigid body in two constant fields is considered. The motion is described by the Hamiltonian system with three degrees of freedom. This system in general case does not have any explicit symmetry groups and, therefore, cannot be reduced to a family of systems with two degrees of freedom. The critical points of the energy integral are found. It appeared that the energy of the system is a Morse function and has exactly four distinct critical points with different critical values and Morse indexes 0,1,2,3. In particular, the body has four equilibria, only one of which is stable. Basing on the Morse theory the smooth type of 5-dimensional non-degenerate iso-energetic manifolds is pointed out.
Ключевые слова:
rigid body, two constant fields, iso-energetic manifolds.
Поступила в редакцию: 14.02.2005 Принята в печать: 28.02.2005
Образец цитирования:
M. P. Kharlamov, D. B. Zotev, “Non-degenerate energy surfaces of rigid body in two constant fields”, Regul. Chaotic Dyn., 10:1 (2005), 15–19
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd692 https://www.mathnet.ru/rus/rcd/v10/i1/p15
|
|