|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
On the 70th birthday of L.P. Shilnikov
One-dimensional bifurcations in some infinite-dimensional dynamical systems and ideal turbulence
A. N. Sharkovsky, E. Yu. Romanenko, V. V. Fedorenko Institute of Mathematics,
National Academy of Sciences of Ukraine,
3, Tereshchenkivska str., 01601 Kiev, Ukraine
Аннотация:
Many effects of real turbulence can be observed in infinite-dimensional dynamical systems induced by certain classes of nonlinear boundary value problems for linear partial differential equations. The investigation of such infinite-dimensional dynamical systems leans upon one-dimensional maps theory, which allows one to understand mathematical mechanisms of the onset of complex structures in the solutions of the boundary value problems. We describe bifurcations in some infinite-dimensional systems, that result from bifurcations of one-dimensional maps and cause the relatively new mathematical phenomenon—ideal turbulence.
Ключевые слова:
dynamical system, boundary value problem, difference equation, one-dimensional map, bifurcation, ideal turbulence, fractal, random process.
Поступила в редакцию: 12.07.2005 Принята в печать: 16.10.2005
Образец цитирования:
A. N. Sharkovsky, E. Yu. Romanenko, V. V. Fedorenko, “One-dimensional bifurcations in some infinite-dimensional dynamical systems and ideal turbulence”, Regul. Chaotic Dyn., 11:2 (2006), 319–328
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd678 https://www.mathnet.ru/rus/rcd/v11/i2/p319
|
Статистика просмотров: |
Страница аннотации: | 98 |
|