|
On the 70th birthday of L.P. Shilnikov
Partial normal form near a saddle of a Hamiltonian system
L. M. Lerman Institute for Applied Mathematics and Cybernetics,
10, Uljanova Str. 603005 Nizhny Novgorod, Russia
Аннотация:
For a smooth or real analytic Hamiltoniain vector field with two degrees of freedom we derive a local partial normal form of the vector field near a saddle equilibrium (two pairs of real eigenvalues $\pm \lambda_1$, $\pm \lambda_2$, $ \lambda_1 > \lambda_2 > 0$). Only a resonance $ \lambda_1 = n \lambda_2$ (if is present) influences on the normal form. This form allows one to get convenient almost linear estimates for solutions of the vector field using the Shilnikov's boundary value problem. Such technique is used when studying the orbit behavior near homoclinic orbits to saddle equilibria in a Hamiltonian system. The form obtained depends smoothly on parameters, if the vector field smoothly depends on parameters.
Ключевые слова:
Hamiltonian, saddle, normal form, symplectic transformation, invariant manifold.
Поступила в редакцию: 08.11.2005 Принята в печать: 16.01.2006
Образец цитирования:
L. M. Lerman, “Partial normal form near a saddle of a Hamiltonian system”, Regul. Chaotic Dyn., 11:2 (2006), 291–297
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd675 https://www.mathnet.ru/rus/rcd/v11/i2/p291
|
Статистика просмотров: |
Страница аннотации: | 85 |
|