|
Эта публикация цитируется в 32 научных статьях (всего в 32 статьях)
Rolling of a Non-homogeneous Ball Over a Sphere Without Slipping and Twisting
A. V. Borisov, I. S. Mamaev Institute of Computer Science, Udmurt State University,
Universitetskaya ul. 1, Izhevsk 426034, Russia
Аннотация:
Consider the problem of rolling a dynamically asymmetric balanced ball (the Chaplygin ball) over a sphere. Suppose that the contact point has zero velocity and the projection of the angular velocity to the normal vector of the sphere equals zero. This model of rolling differs from the classical one. It can be realized, in some approximation, if the ball is rubber coated and the sphere is absolutely rough. Recently, J. Koiller and K. Ehlers pointed out the measure and the Hamiltonian structure for this problem. Using this structure we construct an isomorphism between this problem and the problem of the motion of a point on a sphere in some potential field. The integrable cases are found.
Ключевые слова:
nonholonomic mechanics, reducing multiplier, hamiltonization, isomorphism.
Поступила в редакцию: 09.12.2006 Принята в печать: 28.02.2007
Образец цитирования:
A. V. Borisov, I. S. Mamaev, “Rolling of a Non-homogeneous Ball Over a Sphere Without Slipping and Twisting”, Regul. Chaotic Dyn., 12:2 (2007), 153–159
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd618 https://www.mathnet.ru/rus/rcd/v12/i2/p153
|
Статистика просмотров: |
Страница аннотации: | 104 |
|