Regular and Chaotic Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Regul. Chaotic Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Regular and Chaotic Dynamics, 2007, том 12, выпуск 2, страницы 127–152
DOI: https://doi.org/10.1134/S1560354707020025
(Mi rcd617)
 

Эта публикация цитируется в 52 научных статьях (всего в 52 статьях)

Rubber Rolling over a Sphere

J. Koillera, K. Ehlersb

a Fundação Getulio Vargas, Praia de Botafogo 190, Rio de Janeiro, RJ 22250-040, Brazil
b Truckee Meadows Community College, 7000 Dandini Boulevard, Reno, NV 89512-3999, USA
Аннотация: "Rubber" coated bodies rolling over a surface satisfy a no-twist condition in addition to the no slip condition satisfied by "marble" coated bodies [1]. Rubber rolling has an interesting differential geometric appeal because the geodesic curvatures of the curves on the surfaces at corresponding points are equal. The associated distribution in the 5 dimensional configuration space has 2-3-5 growth (these distributions were first studied by Cartan; he showed that the maximal symmetries occurs for rubber rolling of spheres with 3:1 diameters ratio and materialize the exceptional group $G_2$). The 2-3-5 nonholonomic geometries are classified in a companion paper [2] via Cartan's equivalence method [3]. Rubber rolling of a convex body over a sphere defines a generalized Chaplygin system [4-8] with $SO(3)$ symmetry group, total space $Q = SO (3) \times S^2$ and base $S^2$, that can be reduced to an almost Hamiltonian system in $T * S^2$ with a non-closed 2-form $\omega_{NH}$. In this paper we present some basic results on the sphere-sphere problem: a dynamically asymmetric but balanced sphere of radius $b$ (unequal moments of inertia $I_j$ but with center of gravity at the geometric center), rubber rolling over another sphere of radius $a$. In this example $\omega_{NH}$ is conformally symplectic [9]: the reduced system becomes Hamiltonian after a coordinate dependent change of time. In particular there is an invariant measure, whose density is the determinant of the reduced Legendre transform, to the power $p = 1/2 (b/a - 1)$. Using sphero-conical coordinates we verify the result by Borisov and Mamaev [10] that the system is integrable for $p=-1/2$ (ball over a plane). They have found another integrable case [11] corresponding to $p=-3/2$ (rolling ball with twice the radius of a fixed internal ball). Strikingly, a different set of sphero-conical coordinates separates the Hamiltonian in this case. No other integrable cases with different $I_j$ are known.
Ключевые слова: nonholonomic mechanics, reduction, Chaplygin systems.
Поступила в редакцию: 02.12.2006
Принята в печать: 18.02.2007
Реферативные базы данных:
Тип публикации: Статья
Язык публикации: английский
Образец цитирования: J. Koiller, K. Ehlers, “Rubber Rolling over a Sphere”, Regul. Chaotic Dyn., 12:2 (2007), 127–152
Цитирование в формате AMSBIB
\RBibitem{KoiEhl07}
\by J. Koiller, K. Ehlers
\paper Rubber Rolling over a Sphere
\jour Regul. Chaotic Dyn.
\yr 2007
\vol 12
\issue 2
\pages 127--152
\mathnet{http://mi.mathnet.ru/rcd617}
\crossref{https://doi.org/10.1134/S1560354707020025}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2350302}
\zmath{https://zbmath.org/?q=an:1229.37089}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/rcd617
  • https://www.mathnet.ru/rus/rcd/v12/i2/p127
  • Эта публикация цитируется в следующих 52 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Статистика просмотров:
    Страница аннотации:84
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024