|
Эта публикация цитируется в 12 научных статьях (всего в 12 статьях)
JÜRGEN MOSER – 80
Global properties of integrable Hamiltonian systems
F. Takens, H. W. Broer, O. V. Lukina Institute for Mathematics and Computer Science, University of Groningen
P.O. Box 407, 9700 AK Groningen, The Netherlands
Аннотация:
This paper deals with Lagrangian bundles which are symplectic torus bundles that occur in integrable Hamiltonian systems. We review the theory of obstructions to triviality, in particular monodromy, as well as the ensuing classification problems which involve the Chern and Lagrange class. Our approach, which uses simple ideas from differential geometry and algebraic topology, reveals the fundamental role of the integer affine structure on the base space of these bundles. We provide a geometric proof of the classification of Lagrangian bundles with fixed integer affine structure by their Lagrange class.
Ключевые слова:
integrable Hamiltonian system, global action-angle coordinates, symplectic topology, monodromy, Lagrange class, classification of integrable systems.
Поступила в редакцию: 31.05.2008 Принята в печать: 22.08.2008
Образец цитирования:
F. Takens, H. W. Broer, O. V. Lukina, “Global properties of integrable Hamiltonian systems”, Regul. Chaotic Dyn., 13:6 (2008), 602–644
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd605 https://www.mathnet.ru/rus/rcd/v13/i6/p602
|
|