|
Эта публикация цитируется в 51 научных статьях (всего в 51 статьях)
JÜRGEN MOSER – 80
Chaplygin ball over a fixed sphere: an explicit integration
A.V. Borisova, Yu.N. Fedorovb, I.S. Mamaeva a Institute of Computer Science, Udmurt State University,
ul. Universitetskaya 1, Izhevsk, 426034 Russia
b Department de Matemática Aplicada I,
Universitat Politecnica de Catalunya
Аннотация:
We consider a nonholonomic system describing the rolling of a dynamically nonsymmetric sphere over a fixed sphere without slipping. The system generalizes the classical nonholonomic Chaplygin sphere problem and it is shown to be integrable for one special ratio of radii of the spheres. After a time reparameterization the system becomes a Hamiltonian one and admits a separation of variables and reduction to Abel–Jacobi quadratures. The separating variables that we found appear to be a non-trivial generalization of ellipsoidal (spheroconic) coordinates on the Poisson sphere, which can be useful in other integrable problems.
Using the quadratures we also perform an explicit integration of the problem in theta-functions of the new time.
Ключевые слова:
Chaplygin ball, explicit integration, nonholonomic mechanics.
Поступила в редакцию: 21.07.2008 Принята в печать: 07.10.2008
Образец цитирования:
A.V. Borisov, Yu.N. Fedorov, I.S. Mamaev, “Chaplygin ball over a fixed sphere: an explicit integration”, Regul. Chaotic Dyn., 13:6 (2008), 557–571
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd601 https://www.mathnet.ru/rus/rcd/v13/i6/p557
|
|