|
Эта публикация цитируется в 5 научных статьях (всего в 5 статьях)
Absolute and Relative Choreographies in Rigid Body Dynamics
A. V. Borisov, A. A. Kilin, I. S. Mamaev Institute of Computer Science, Udmurt State University,
ul. Universitetskaya 1, Izhevsk, 426034 Russia
Аннотация:
For the classical problem of motion of a rigid body about a fixed point with zero area integral, we present a family of solutions that are periodic in the absolute space. Such solutions are known as choreographies. The family includes the well-known Delone solutions (for the Kovalevskaya case), some particular solutions for the Goryachev–Chaplygin case, and the Steklov solution. The "genealogy" of solutions of the family naturally appearing from the energy continuation and their connection with the Staude rotations are considered. It is shown that if the integral of areas is zero, the solutions are periodic with respect to a coordinate frame that rotates uniformly about the vertical (relative choreographies).
Ключевые слова:
rigid-body dynamics, periodic solutions, continuation by a parameter, bifurcation.
Поступила в редакцию: 14.03.2007 Принята в печать: 28.11.2007
Образец цитирования:
A. V. Borisov, A. A. Kilin, I. S. Mamaev, “Absolute and Relative Choreographies in Rigid Body Dynamics”, Regul. Chaotic Dyn., 13:3 (2008), 204–220
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd571 https://www.mathnet.ru/rus/rcd/v13/i3/p204
|
Статистика просмотров: |
Страница аннотации: | 108 |
|