|
Dynamics of Coupled Non-Identical Systems with Period-Doubling Cascade
A. P. Kuznetsovab, I. R. Sataeva, Yu. V. Sedovaab a Institute of Radio-Engineering and Electronics, RAS,
ul. Zelenaya 38, Saratov, 410019 Russia
b Saratov State University,
ul. Astrakhanskaya 83, Saratov, 410012 Russia
Аннотация:
We discuss the structure of bifurcation diagram in the plane of parameters controlling period-doublings for the system of coupled logistic maps. The analysis is carried out by computing the charts of dynamical regimes and charts of Lyapunov exponents giving showy and effective illustrations. The critical point of codimension two at the border of chaos is found. It is a terminal point for the Feigenbaum critical line. The bifurcation analysis in the vicinity of this point is presented.
Ключевые слова:
criticality, universality, transition to chaos, coupled maps, bifurcation, terminal point.
Поступила в редакцию: 14.09.2007 Принята в печать: 08.11.2007
Образец цитирования:
A. P. Kuznetsov, I. R. Sataev, Yu. V. Sedova, “Dynamics of Coupled Non-Identical Systems with Period-Doubling Cascade”, Regul. Chaotic Dyn., 13:1 (2008), 9–18
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd555 https://www.mathnet.ru/rus/rcd/v13/i1/p9
|
Статистика просмотров: |
Страница аннотации: | 75 |
|