|
Эта публикация цитируется в 19 научных статьях (всего в 19 статьях)
JÜRGEN MOSER – 80
On Stability at the Hamiltonian Hopf Bifurcation
L. M. Lerman, A. P. Markova Department of Differential Equations and Math. Analysis
and Research Institute of Applied Mathematics and Cybernetics,
Nizhny Novgorod State University,
10, Ulyanova Str. 603005 Nizhny Novgorod, Russia
Аннотация:
For a 2 d.o.f. Hamiltonian system we prove the Lyapunov stability of its equilibrium with two double pure imaginary eigenvalues and non-semisimple Jordan form for the linearization matrix, when some coefficient in the 4th order normal form is positive (the equilibrium is known to be unstable, if this coefficient is negative). Such the degenerate equilibrium is met generically in one-parameter unfoldings, the related bifurcation is called to be the Hamiltonian Hopf Bifurcation. Though the stability is known since 1977, proofs that were published are either incorrect or not complete. Our proof is based on the KAM theory and a work with the Weierstrass elliptic functions, estimates of power series and scaling.
Ключевые слова:
Hamiltonian Hopf Bifurcation, KAM theory, Lyapunov stability, normal form, action-angle variables, elliptic functions, scaling.
Поступила в редакцию: 31.08.2008 Принята в печать: 04.12.2008
Образец цитирования:
L. M. Lerman, A. P. Markova, “On Stability at the Hamiltonian Hopf Bifurcation”, Regul. Chaotic Dyn., 14:1 (2009), 148–162
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd544 https://www.mathnet.ru/rus/rcd/v14/i1/p148
|
|