|
Эта публикация цитируется в 6 научных статьях (всего в 6 статьях)
Numerical Verification of the Steepness of Three and Four Degrees of Freedom Hamiltonian Systems
Gabriella Schirinzia, Massimiliano Guzzob a Università del Salento, Dipartimento di Matematica e Fisica, Via per Arnesano - 73100 Lecce, Italy
b Università degli Studi di Padova, Dipartimento di Matematica, Via Trieste, 63 - 35121 Padova, Italy
Аннотация:
We describe a new algorithm for the numerical verification of steepness, a necessary property for the application of Nekhoroshev’s theorem, of functions of three and four variables. Specifically, by analyzing the Taylor expansion of order four, the algorithm analyzes the steepness of functions whose Taylor expansion of order three is not steep. In this way, we provide numerical evidence of steepness of the Birkhoff normal form around the Lagrangian equilibrium points L4–L5 of the spatial restricted three-body problem (for the only value of the reduced mass for which the Nekhoroshev stability was still unknown), and of the four-degreesof-freedom Hamiltonian system obtained from the Fermi–Pasta–Ulam problem by setting the number of particles equal to four.
Ключевые слова:
Nekhoroshev’s theorem, steepness, three-body-problem, Fermi–Pasta–Ulam.
Поступила в редакцию: 06.06.2014
Образец цитирования:
Gabriella Schirinzi, Massimiliano Guzzo, “Numerical Verification of the Steepness of Three and Four Degrees of Freedom Hamiltonian Systems”, Regul. Chaotic Dyn., 20:1 (2015), 1–18
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd54 https://www.mathnet.ru/rus/rcd/v20/i1/p1
|
Статистика просмотров: |
Страница аннотации: | 158 | Список литературы: | 48 |
|