|
Эта публикация цитируется в 6 научных статьях (всего в 6 статьях)
On the stability problem of stationary solutions for the Euler equation on a 2-dimensional torus
P. Buttà, P. Negrini Dipartimento di Matematica, SAPIENZA Università di Roma,
P. le Aldo Moro 2, 00185 Roma, Italy
Аннотация:
We study the linear stability problem of the stationary solution $\psi^*=-\cos y$ for the Euler equation on a 2-dimensional flat torus of sides $2\pi L$ and $2\pi$. We show that $\psi^*$ is stable if $L\in (0, 1)$ and that exponentially unstable modes occur in a right neighborhood of $L=n$ for any integer $n$. As a corollary, we gain exponentially instability for any $L$ large enough and an unbounded growth of the number of unstable modes as $L$ diverges.
Ключевые слова:
Euler equation, shear flows, linear stability.
Поступила в редакцию: 19.01.2010 Принята в печать: 03.03.2010
Образец цитирования:
P. Buttà, P. Negrini, “On the stability problem of stationary solutions for the Euler equation on a 2-dimensional torus”, Regul. Chaotic Dyn., 15:6 (2010), 637–645
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd522 https://www.mathnet.ru/rus/rcd/v15/i6/p637
|
Статистика просмотров: |
Страница аннотации: | 77 |
|