|
Эта публикация цитируется в 34 научных статьях (всего в 34 статьях)
On the 60th birthday of professor V.V. Kozlov
Poisson structures for geometric curve flows in semi-simple homogeneous spaces
G. Marí Beffaa, P. J. Olverb a Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706, USA
b School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455, USA
Аннотация:
We apply the equivariant method of moving frames to investigate the existence of Poisson structures for geometric curve flows in semi-simple homogeneous spaces. We derive explicit compatibility conditions that ensure that a geometric flow induces a Hamiltonian evolution of the associated differential invariants. Our results are illustrated by several examples of geometric interest.
Ключевые слова:
moving frame, Poisson structure, homogeneous space, invariant curve flow, differential invariant, invariant variational bicomplex.
Поступила в редакцию: 12.10.2009 Принята в печать: 13.03.2010
Образец цитирования:
G. Marí Beffa, P. J. Olver, “Poisson structures for geometric curve flows in semi-simple homogeneous spaces”, Regul. Chaotic Dyn., 15:4-5 (2010), 532–550
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd514 https://www.mathnet.ru/rus/rcd/v15/i4/p532
|
Статистика просмотров: |
Страница аннотации: | 98 |
|