Regular and Chaotic Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Regul. Chaotic Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Regular and Chaotic Dynamics, 2010, том 15, выпуск 2-3, страницы 335–347
DOI: https://doi.org/10.1134/S156035471002019X
(Mi rcd499)
 

Эта публикация цитируется в 1 научной статье (всего в 2 статье)

On the 75th birthday of Professor L.P. Shilnikov

Strange attractors. Topologic, geometric and algebraic aspects

R. V. Plykin, N. E. Klinshpont

Department of High Mathematics, Obninsk State Technical University of Nuclear Power Engineering, Studgorodok 1, Obninsk, 249020 Kaluga Region, Russia
Аннотация: This article is a review on research work of two authors on hyperbolic and Lorenz like strange attractors. In 1971 R. Plykin received a letter from two young scientists of Warwick University David Chillingworth and Anthony Manning with pointing out his errors in the article entitled "The topology of basic sets for Smale diffeomorphisms". The main error in that manuscript was the statement about nonexistence of one dimensional hyperbolic attractor of the diffeomorphism of two-sphere. The first part of this report corrects previous errors and carries information about geometry and topology of hyperbolic strange attractors. The second part of the report contains some results obtained by N. Klinshpont on the problem of topological classification of Lorenz type attractors and their generalizations.
An investigation of stochastic properties of differentiable dynamical systems often results in study other limiting formations, the isolation of which is a difficult problem which requires the mobilization of not only analytical and geometrical methods but also substantial computational resources. In the geometrical approach, which this investigation follows, manifolds are studied together with dynamical systems on them in which the diversity of structures of attractors occurs and the main difficulties are the classification problems.
Ключевые слова: dynamical systems, strange attractor, centralizer, topological invariant.
Поступила в редакцию: 23.11.2009
Принята в печать: 18.02.2010
Реферативные базы данных:
Тип публикации: Personalia
Язык публикации: английский
Образец цитирования: R. V. Plykin, N. E. Klinshpont, “Strange attractors. Topologic, geometric and algebraic aspects”, Regul. Chaotic Dyn., 15:2-3 (2010), 335–347
Цитирование в формате AMSBIB
\RBibitem{PlyKli10}
\by R. V. Plykin, N. E. Klinshpont
\paper Strange attractors. Topologic, geometric and algebraic aspects
\jour Regul. Chaotic Dyn.
\yr 2010
\vol 15
\issue 2-3
\pages 335--347
\mathnet{http://mi.mathnet.ru/rcd499}
\crossref{https://doi.org/10.1134/S156035471002019X}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2644341}
\zmath{https://zbmath.org/?q=an:1228.37028}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/rcd499
  • https://www.mathnet.ru/rus/rcd/v15/i2/p335
  • Эта публикация цитируется в следующих 2 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Статистика просмотров:
    Страница аннотации:82
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024