|
Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)
On the 75th birthday of Professor L.P. Shilnikov
Dynamical networks: continuous time and general discrete time models
V. S. Afraimovicha, L. A. Bunimovichb, S. V. Morenoa a Instituto de Investigación en Comunicacion Óptica,
Universidad Autónoma de San Luis Potosí
Karakorum 1470, Lomas 4a 78220, San Luis Potosi, S.L.P., México
b ABC Math Program and School of Mathematics, Georgia Institute of Technology Atlanta, GA, 30332-0160, USA
Аннотация:
Dynamical networks are characterized by 1) their topology (structure of the graph of interactions among the elements of a network); 2) the interactions between the elements of the network; 3) the intrinsic (local) dynamics of the elements of the network. A general approach to studying the commulative effect of all these three factors on the evolution of networks of a very general type has been developed in [1]. Besides, in this paper there were obtained sufficient conditions for a global stability (generalized strong synchronization) of networks with an arbitrary topology and the dynamics which is a composition (action of one after another) of a local dynamics of the elements of a network and of the interactions between these elements. Here we extend the results of [1] on global stability (generalized strong synchronization) to the case of a general dynamics in discrete time dynamical networks and to general dynamical networks with continuous time.
Ключевые слова:
global stability, topological pressure, topological Markov chain, dynamical networks.
Поступила в редакцию: 11.12.2009 Принята в печать: 29.12.2009
Образец цитирования:
V. S. Afraimovich, L. A. Bunimovich, S. V. Moreno, “Dynamical networks: continuous time and general discrete time models”, Regul. Chaotic Dyn., 15:2-3 (2010), 127–145
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd483 https://www.mathnet.ru/rus/rcd/v15/i2/p127
|
Статистика просмотров: |
Страница аннотации: | 95 |
|