|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
A Parabolic Chaplygin Pendulum and a Paul Trap: Nonintegrability, Stability, and Boundedness
Alexey V. Borisovab, Alexander A. Kilinc, Ivan S. Mamaevde a Institute of Mathematics and Mechanics of the Ural Branch of RAS,
ul. S.Kovalevskoi 16, Ekaterinburg, 620990 Russia
b A.A. Blagonravov Mechanical Engineering Research Institute of RAS,
ul. Bardina 4, Moscow, 117334 Russia
c Udmurt State University, ul. Universitetskaya 1, Izhevsk, 426034 Russia
d Center for Technologies in Robotics and Mechatronics Components, Innopolis University, ul. Universitetskaya 1, Innopolis, 420500 Russia
e Moscow Institute of Physics and Technology, Institutskii per. 9, Dolgoprudnyi, 141700 Russia
Аннотация:
This paper is a small review devoted to the dynamics of a point on a paraboloid. Specifically, it is concerned with the motion both under the action of a gravitational field and without it. It is assumed that the paraboloid can rotate about a vertical axis with constant angular velocity. The paper includes both well-known results and a number of new results.
We consider the two most widespread friction (resistance) models: dry (Coulomb) friction and viscous friction. It is shown that the addition of external damping (air drag) can lead to stability of equilibrium at the saddle point and hence to preservation of the region of bounded motion in a neighborhood of the saddle point. Analysis of three-dimensional Poincaré sections shows that limit cycles can arise in this case in the neighborhood of the saddle point.
Ключевые слова:
parabolic pendulum, Paul trap, rotating paraboloid, internal damping, external damping, friction, resistance, linear stability, Hill’s region, bifurcational diagram, Poincaré section, bounded trajectory, chaos, integrability, nonintegrability, sepa.
Поступила в редакцию: 28.03.2019 Принята в печать: 06.05.2019
Образец цитирования:
Alexey V. Borisov, Alexander A. Kilin, Ivan S. Mamaev, “A Parabolic Chaplygin Pendulum and a Paul Trap: Nonintegrability, Stability, and Boundedness”, Regul. Chaotic Dyn., 24:3 (2019), 329–352
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd481 https://www.mathnet.ru/rus/rcd/v24/i3/p329
|
|