|
Эта публикация цитируется в 5 научных статьях (всего в 5 статьях)
A Note about Integrable Systems on Low-dimensional Lie Groups and Lie Algebras
Alexey Bolsinovab, Jinrong Baob a Faculty of Mechanics and Mathematics, Moscow State University, 11992 Russia
b School of Mathematics, Loughborough University,
Loughborough, Leicestershire, LE11 3TU, United Kingdom
Аннотация:
The goal of the paper is to explain why any left-invariant Hamiltonian system on (the cotangent bundle of) a $3$-dimensonal Lie group $G$ is Liouville integrable. We derive this property from the fact that the coadjoint orbits of $G$ are two-dimensional so that the integrability of left-invariant systems is a common property of all such groups regardless their dimension.
We also give normal forms for left-invariant Riemannian and sub-Riemannian metrics on $3$-dimensional Lie groups focusing on the case of solvable groups, as the cases of $SO(3)$ and $SL(2)$ have been already extensively studied. Our description is explicit and is given in global coordinates on $G$ which allows one to easily obtain parametric equations of geodesics in quadratures.
Ключевые слова:
Integrable systems, Lie groups, geodesic flow, left-invariant metric, sub-Riemannian structure.
Поступила в редакцию: 17.09.2018 Принята в печать: 20.10.2018
Образец цитирования:
Alexey Bolsinov, Jinrong Bao, “A Note about Integrable Systems on Low-dimensional Lie Groups and Lie Algebras”, Regul. Chaotic Dyn., 24:3 (2019), 266–280
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd477 https://www.mathnet.ru/rus/rcd/v24/i3/p266
|
Статистика просмотров: |
Страница аннотации: | 279 | Список литературы: | 63 |
|