Regular and Chaotic Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Regul. Chaotic Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Regular and Chaotic Dynamics, 2019, том 24, выпуск 3, страницы 235–265
DOI: https://doi.org/10.1134/S1560354719030018
(Mi rcd476)
 

Эта публикация цитируется в 7 научных статьях (всего в 7 статьях)

On the Motions of One Near-Autonomous Hamiltonian System at a $1:1:1$ Resonance

Olga V. Kholostovaab

a Moscow Institute of Physics and Technology (National Research University), Institutskiy per. 9, Dolgoprudny, 141701 Russia
b Moscow Aviation Institute (National Research University), Volokolamskoe sh. 4, GSP-3, A-80, Moscow, 125993 Russia
Список литературы:
Аннотация: We consider the motion of a $2\pi$-periodic in time two-degree-of-freedom Hamiltonian system in a neighborhood of the equilibrium position. It is assumed that the system depends on a small parameter e and other parameters and is autonomous at $e=0$. It is also assumed that in the autonomous case there is a set of parameter values for which a $1:1$ resonance occurs, and the matrix of the linearized equations of perturbed motion is reduced to a diagonal form. The study is carried out using an example of the problem of the motion of a dynamically symmetric rigid body (satellite) relative to its center of mass in a central Newtonian gravitational field on an elliptical orbit with small eccentricity in the neighborhood of the cylindrical precession. The character of the motions of the reduced two-degree-of-freedom system in the vicinity of the resonance point in the three-dimensional parameter space is studied. Stability regions of the unperturbed motion (the cylindrical precession) and two types of parametric resonance regions corresponding to the case of zero frequency and the case of equal frequencies in the transformed approximate system of the linearized equations of perturbed motion are considered. The problem of the existence, number and stability of $2\pi$-periodic motions of the satellite is solved, and conclusions on the existence of two- and three-frequency conditionally periodic motions are obtained.
Ключевые слова: Hamiltonian system, resonance, stability, cylindrical precession of a satellite, periodic motion, conditionally periodic motion.
Финансовая поддержка Номер гранта
Министерство образования и науки Российской Федерации 3.3858.2017/4.6
This work was carried out within the framework of the state assignment (project No. 3.3858.2017/4.6).
Поступила в редакцию: 11.09.2018
Принята в печать: 01.03.2019
Реферативные базы данных:
Тип публикации: Статья
Язык публикации: английский
Образец цитирования: Olga V. Kholostova, “On the Motions of One Near-Autonomous Hamiltonian System at a $1:1:1$ Resonance”, Regul. Chaotic Dyn., 24:3 (2019), 235–265
Цитирование в формате AMSBIB
\RBibitem{Kho19}
\by Olga V. Kholostova
\paper On the Motions of One Near-Autonomous Hamiltonian System at a $1:1:1$ Resonance
\jour Regul. Chaotic Dyn.
\yr 2019
\vol 24
\issue 3
\pages 235--265
\mathnet{http://mi.mathnet.ru/rcd476}
\crossref{https://doi.org/10.1134/S1560354719030018}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000470233800001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85066611517}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/rcd476
  • https://www.mathnet.ru/rus/rcd/v24/i3/p235
  • Эта публикация цитируется в следующих 7 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024