Regular and Chaotic Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Regul. Chaotic Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Regular and Chaotic Dynamics, 2010, том 15, выпуск 1, страницы 1–39
DOI: https://doi.org/10.1134/S1560354710010016
(Mi rcd470)
 

Эта публикация цитируется в 35 научных статьях (всего в 35 статьях)

Geometrical models of the phase space structures governing reaction dynamics

H. Waalkensab, S. Wigginsa

a School of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, UK
b Department of Mathematics, University of Groningen, Nijenborgh 9, 9747 AG Groningen, The Netherlands
Аннотация: Hamiltonian dynamical systems possessing equilibria of saddle $\times$ center $\times \cdots \times$ center stability type display reaction-type dynamics for energies close to the energy of such equilibria; entrance and exit from certain regions of the phase space is only possible via narrow bottlenecks created by the influence of the equilibrium points. In this paper we provide a thorough pedagogical description of the phase space structures that are responsible for controlling transport in these problems. Of central importance is the existence of a Normally Hyperbolic Invariant Manifold (NHIM), whose stable and unstable manifolds have sufficient dimensionality to act as separatrices, partitioning energy surfaces into regions of qualitatively distinct behavior. This NHIM forms the natural (dynamical) equator of a (spherical) dividing surface which locally divides an energy surface into two components ("reactants" and "products"), one on either side of the bottleneck. This dividing surface has all the desired properties sought for in transition state theory where reaction rates are computed from the flux through a dividing surface. In fact, the dividing surface that we construct is crossed exactly once by reactive trajectories, and not crossed by nonreactive trajectories, and related to these properties, minimizes the flux upon variation of the dividing surface.
We discuss three presentations of the energy surface and the phase space structures contained in it for 2-degree-of-freedom (DoF) systems in the three-dimensional space $\mathbb{R}^3$, and two schematic models which capture many of the essential features of the dynamics for $n$-DoF systems. In addition, we elucidate the structure of the NHIM.
Ключевые слова: high dimensional Hamiltonian dynamics, phase space structure and geometry, normally hyperbolic invariant manifold, Poincaré–Birkhoff normal form theory, chemical reaction dynamics, transition state theory.
Поступила в редакцию: 06.07.2009
Принята в печать: 28.11.2009
Реферативные базы данных:
Тип публикации: Статья
Язык публикации: английский
Образец цитирования: H. Waalkens, S. Wiggins, “Geometrical models of the phase space structures governing reaction dynamics”, Regul. Chaotic Dyn., 15:1 (2010), 1–39
Цитирование в формате AMSBIB
\RBibitem{WaaWig10}
\by H. Waalkens, S. Wiggins
\paper Geometrical models of the phase space structures governing reaction dynamics
\jour Regul. Chaotic Dyn.
\yr 2010
\vol 15
\issue 1
\pages 1--39
\mathnet{http://mi.mathnet.ru/rcd470}
\crossref{https://doi.org/10.1134/S1560354710010016}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2593228}
\zmath{https://zbmath.org/?q=an:1229.37046}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/rcd470
  • https://www.mathnet.ru/rus/rcd/v15/i1/p1
  • Эта публикация цитируется в следующих 35 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Статистика просмотров:
    Страница аннотации:108
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024