|
Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)
Statistical Irreversibility of the Kac Reversible Circular Model
Valery V. Kozlov V.A. Steklov Mathematical Institute, Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
Аннотация:
The Kac circular model is a discrete dynamical system which has the property of recurrence and reversibility. Within the framework of this model M.Kac formulated necessary conditions for irreversibility over "short" time intervals to take place and demonstrated Boltzmann’s most important exploration methods and ideas, outlining their advantages and limitations. We study the circular model within the realm of the theory of Gibbs ensembles and offer a new approach to a rigorous proof of the "zeroth" law of thermodynamics based on the analysis of weak convergence of probability distributions.
Ключевые слова:
reversibility, stochastic equilibrium, weak convergence.
Поступила в редакцию: 29.10.2010 Принята в печать: 04.12.2010
Образец цитирования:
Valery V. Kozlov, “Statistical Irreversibility of the Kac Reversible Circular Model”, Regul. Chaotic Dyn., 16:5 (2011), 536–549
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd468 https://www.mathnet.ru/rus/rcd/v16/i5/p536
|
Статистика просмотров: |
Страница аннотации: | 141 |
|