Аннотация:
Families of three-body Hamiltonian systems in one dimension have been recently proved to be maximally superintegrable by interpreting them as one-body systems in the three-dimensional Euclidean space, examples are the Calogero, Wolfes and Tramblay Turbiner Winternitz systems. For some of these systems, we show in a new way how the superintegrability is associated with their dihedral symmetry in the three-dimensional space, the order of the dihedral symmetries being associated with the degree of the polynomial in the momenta first integrals. As a generalization, we introduce the analysis of integrability and superintegrability of four-body systems in one dimension by interpreting them as one-body systems with the symmetries of the Platonic polyhedra in the four-dimensional Euclidean space. The paper is intended as a short review of recent results in the sector, emphasizing the relevance of discrete symmetries for the superintegrability of the systems considered.
Ключевые слова:
superintegrability, higher-degree first integrals, discrete symmetries, Tremblay-Turbiner–Winterniz system.
Поступила в редакцию: 11.11.2010 Принята в печать: 27.02.2011
Образец цитирования:
Claudia Chanu, Luca Degiovanni, Giovanni Rastelli, “Three and Four-body Systems in One Dimension: Integrability, Superintegrability and Discrete Symmetries”, Regul. Chaotic Dyn., 16:5 (2011), 496–503
\RBibitem{ChaDegRas11}
\by Claudia Chanu, Luca Degiovanni, Giovanni Rastelli
\paper Three and Four-body Systems in One Dimension: Integrability, Superintegrability and Discrete Symmetries
\jour Regul. Chaotic Dyn.
\yr 2011
\vol 16
\issue 5
\pages 496--503
\mathnet{http://mi.mathnet.ru/rcd465}
\crossref{https://doi.org/10.1134/S1560354711050066}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2844860}
\zmath{https://zbmath.org/?q=an:1309.70021}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd465
https://www.mathnet.ru/rus/rcd/v16/i5/p496
Эта публикация цитируется в следующих 4 статьяx:
Claudia Maria Chanu, Giovanni Rastelli, “Block-Separation of Variables: a Form of Partial Separation for Natural Hamiltonians”, SIGMA, 15 (2019), 013, 22 pp.
N. L. Harshman, “One-Dimensional Traps, Two-Body Interactions, Few-Body Symmetries: I. One, Two, and Three Particles”, Few-Body Syst, 57:1 (2016), 11
Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev, “Superintegrable Generalizations of the Kepler and Hook Problems”, Regul. Chaotic Dyn., 19:3 (2014), 415–434
Willard Miller, Sarah Post, Pavel Winternitz, “Classical and quantum superintegrability with applications”, J. Phys. A: Math. Theor., 46:42 (2013), 423001