Regular and Chaotic Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Regul. Chaotic Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Regular and Chaotic Dynamics, 2011, том 16, выпуск 6, страницы 577–601
DOI: https://doi.org/10.1134/S1560354711060037
(Mi rcd458)
 

Эта публикация цитируется в 1 научной статье (всего в 1 статье)

Trapped Instability and Vortex Formation by an Unstable Coastal Current

Rui Duartea, Xavier Cartona, Xavier Capeta, Laurent Chérubinb

a LPO, UBO/CNRS, Brest, France
b RSMAS, Univ. Miami, USA
Аннотация: This paper addresses the instability of a two-layer coastal current in a quasigeostrophic model; the potential vorticity (PV) structure of this current consists in two uniform cores, located at different depths, with finite width and horizontally shifted. This shift allows both barotropic and baroclinic instability for this current. The PV cores can be like-signed or opposite-signed, leading to their vertical alignment or to their hetonic coupling. These two aspects are novel compared to previous studies. For narrow vorticity cores, short waves dominate, associated with barotropic instability; for wider cores, longer waves are more unstable and are associated with baroclinic processes. Numerical experiments were performed on the $f$-plane with a finite-difference model. When both cores have like-signed PV, trapped instability develops during the nonlinear evolution: vertical alignment of the structures is observed. For narrow cores, short wave breaking occurs close to the coast; for wider cores, substantial turbulence results from the entrainment of ambient fluid into the coastal jet. When the two cores have opposite-signed PV, the nonlinear regimes range from short wave breaking to the ejection of dipoles or tripoles, via a regime of dipole oscillation near the wall. The Fourier analysis of the perturbed flow is appropriate to distinguish the regimes of short wave breaking, of dipole formation, and of turbulence, but not the differences between regimes involving only vortex pairs. To explain more precisely the regimes where two vortices (and their wall images) interact, a point vortex model is appropriate.
Ключевые слова: stability and instability of geophysical and astrophysical flows, vortex flows, rotating fluids, stability problems, applications to physics.
Поступила в редакцию: 22.04.2011
Принята в печать: 15.07.2011
Реферативные базы данных:
Тип публикации: Статья
Язык публикации: английский
Образец цитирования: Rui Duarte, Xavier Carton, Xavier Capet, Laurent Chérubin, “Trapped Instability and Vortex Formation by an Unstable Coastal Current”, Regul. Chaotic Dyn., 16:6 (2011), 577–601
Цитирование в формате AMSBIB
\RBibitem{DuaCarCap11}
\by Rui Duarte, Xavier Carton, Xavier Capet, Laurent Ch\'erubin
\paper Trapped Instability and Vortex Formation by an Unstable Coastal Current
\jour Regul. Chaotic Dyn.
\yr 2011
\vol 16
\issue 6
\pages 577--601
\mathnet{http://mi.mathnet.ru/rcd458}
\crossref{https://doi.org/10.1134/S1560354711060037}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2864536}
\zmath{https://zbmath.org/?q=an:1252.76029}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011RCD....16..577D}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84555194906}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/rcd458
  • https://www.mathnet.ru/rus/rcd/v16/i6/p577
  • Эта публикация цитируется в следующих 1 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Статистика просмотров:
    Страница аннотации:97
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024