Regular and Chaotic Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Regul. Chaotic Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Regular and Chaotic Dynamics, 2019, том 24, выпуск 2, страницы 187–197
DOI: https://doi.org/10.1134/S1560354719020047
(Mi rcd452)
 

Эта публикация цитируется в 5 научных статьях (всего в 5 статьях)

On the Volume Elements of a Manifold with Transverse Zeroes

Robert Cardonaa, Eva Mirandab

a Universitat Politècnica de Catalunya and Barcelona Graduate School of Mathematics, BGSMath, Laboratory of Geometry and Dynamical Systems, Department of Mathematics, EPSEB, Edifici P, UPC, Avinguda del Doctor Marañon 44-50 08028, Barcelona, Spain
b Universitat Politècnica de Catalunya, Barcelona Graduate School of Mathematics BGSMath, Instituto de Ciencias Matemáticas ICMAT, Observatoire de Paris, Laboratory of Geometry and Dynamical Systems, Department of Mathematics, EPSEB, Edifici P, UPC, Avinguda del Doctor Marañon 44-50 08028, Barcelona, Spain
Список литературы:
Аннотация: Moser proved in 1965 in his seminal paper [15] that two volume forms on a compact manifold can be conjugated by a diffeomorphism, that is to say they are equivalent, if and only if their associated cohomology classes in the top cohomology group of a manifold coincide. In particular, this yields a classification of compact symplectic surfaces in terms of De Rham cohomology. In this paper we generalize these results for volume forms admitting transversal zeroes. In this case there is also a cohomology capturing the classification: the relative cohomology with respect to the critical hypersurface. We compare this classification scheme with the classification of Poisson structures on surfaces which are symplectic away from a hypersurface where they fulfill a transversality assumption ($b$-Poisson structures). We do this using the desingularization technique introduced in [10] and extend it to $b^m$-Nambu structures.
Ключевые слова: Moser path method, volume forms, singularities, $b$-symplectic manifolds.
Финансовая поддержка Номер гранта
Ministry of Science and Innovation of Spanish MDM-2014-0445
Ministerio de Economía y Competitividad de España MTM2015-69135-P
Agència de Gestiö d'Ajuts Universitaris i de Recerca 2017SGR932
National Science Foundation DMS-1440140
E. Miranda is supported by the Catalan Institution for Research and Advanced Studies via an ICREA Academia Prize 2016. Robert Cardona acknowledges financial support from the Spanish Ministry of Economy and Competitiveness, through the María de Maeztu Programme for Units of Excellence in R&D (MDM-2014-0445). Both authors are supported by the grants reference number MTM2015-69135-P (MINECO/FEDER) and reference number 2017SGR932 (AGAUR). Part of the work that led to this paper took place at the Fields Institute in Toronto, while the second author was Invited Professor during the Focus Program on Poisson Geometry and Physics in July 2018. This material is based upon work supported by the National Science Foundation under Grant No. DMS-1440140 while the authors were in residence at the Mathematical Sciences Research Institute in Berkeley, California, during the Fall 2018 semester.
Поступила в редакцию: 10.12.2018
Принята в печать: 25.02.2019
Реферативные базы данных:
Тип публикации: Статья
MSC: 53D05, 53D17
Язык публикации: английский
Образец цитирования: Robert Cardona, Eva Miranda, “On the Volume Elements of a Manifold with Transverse Zeroes”, Regul. Chaotic Dyn., 24:2 (2019), 187–197
Цитирование в формате AMSBIB
\RBibitem{CarMir19}
\by Robert Cardona, Eva Miranda
\paper On the Volume Elements of a Manifold with Transverse Zeroes
\jour Regul. Chaotic Dyn.
\yr 2019
\vol 24
\issue 2
\pages 187--197
\mathnet{http://mi.mathnet.ru/rcd452}
\crossref{https://doi.org/10.1134/S1560354719020047}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000464704800004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85064152726}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/rcd452
  • https://www.mathnet.ru/rus/rcd/v24/i2/p187
  • Эта публикация цитируется в следующих 5 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Статистика просмотров:
    Страница аннотации:220
    Список литературы:34
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024