|
Note on Free Symmetric Rigid Body Motion
Vladimir Dragovićab, Borislav Gajića, Božidar Jovanovića a Mathematical Institute SANU, Kneza Mihaila 36, 11000 Belgrade, Serbia
b Department of Mathematical Sciences, The University of Texas at Dallas,
800 West Campbell Road 75080 Richardson TX, USA
Аннотация:
We consider the Euler equations of motion of a free symmetric rigid body around a fixed point, restricted to the invariant subspace given by the zero values of the corresponding linear Noether integrals. In the case of the $SO(n-2)$-symmetry, we show that almost all trajectories are periodic and that the motion can be expressed in terms of elliptic functions. In the case of the $SO(n-3)$-symmetry, we prove the solvability of the problem by using a recent Kozlov’s result on the Euler–Jacobi–Lie theorem.
Ключевые слова:
Euler equations, Manakov integrals, spectral curve, reduced Poisson space.
Поступила в редакцию: 30.04.2015
Образец цитирования:
Vladimir Dragović, Borislav Gajić, Božidar Jovanović, “Note on Free Symmetric Rigid Body Motion”, Regul. Chaotic Dyn., 20:3 (2015), 293–308
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd44 https://www.mathnet.ru/rus/rcd/v20/i3/p293
|
Статистика просмотров: |
Страница аннотации: | 248 | Список литературы: | 57 |
|