|
Эта публикация цитируется в 19 научных статьях (всего в 19 статьях)
Nonlinear Stability Analysis of a Regular Vortex Pentagon Outside a Circle
Leonid G. Kurakinab, Irina V. Ostrovskayaa a Southern Federal University, Faculty of Mathematics, Mechanics and Computer Sciences, ul. Mil’chakova 8a, Rostov-on-Don, 344090 Russia
b Southern Mathematical Institute of VSC RAS, ul. Markusa 22, Vladikavkaz, 362027 Russia
Аннотация:
A nonlinear stability analysis of the stationary rotation of a system of five identical point vortices lying uniformly on a circle of radius $R_0$ outside a circular domain of radius $R$ is performed. The problem is reduced to the problem of stability of an equilibrium position of a Hamiltonian system with a cyclic variable. The stability of stationary motion is interpreted as Routh stability. Conditions for stability, formal stability and instability are obtained depending on the values of the parameter $q=R^2/R^2_0$.
Ключевые слова:
point vortices, stationary motion, stability, resonance.
Поступила в редакцию: 26.01.2012 Принята в печать: 24.03.2012
Образец цитирования:
Leonid G. Kurakin, Irina V. Ostrovskaya, “Nonlinear Stability Analysis of a Regular Vortex Pentagon Outside a Circle”, Regul. Chaotic Dyn., 17:5 (2012), 385–396
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd410 https://www.mathnet.ru/rus/rcd/v17/i5/p385
|
Статистика просмотров: |
Страница аннотации: | 90 |
|