|
Эта публикация цитируется в 11 научных статьях (всего в 11 статьях)
Point Vortices and Classical Orthogonal Polynomials
Maria V. Demina, Nikolai A. Kudryashov Department of Applied Mathematics, National Research Nuclear University “MEPhI”, 31 Kashirskoe Shosse, 115409 Moscow, Russian Federation
Аннотация:
Stationary equilibria of point vortices in the plane and on the cylinder in the presence of a background flow are studied. Vortex systems with an arbitrary choice of circulations are considered. Differential equations satisfied by generating polynomials of vortex configurations are derived. It is shown that these equations can be reduced to a single one. It is found that polynomials that are Wronskians of classical orthogonal polynomials solve the latter equation. As a consequence vortex equilibria at a certain choice of background flows can be described with the help of Wronskians of classical orthogonal polynomials.
Ключевые слова:
point vortices, special polynomials, classical orthogonal polynomials.
Поступила в редакцию: 24.04.2012 Принята в печать: 16.06.2012
Образец цитирования:
Maria V. Demina, Nikolai A. Kudryashov, “Point Vortices and Classical Orthogonal Polynomials”, Regul. Chaotic Dyn., 17:5 (2012), 371–384
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd409 https://www.mathnet.ru/rus/rcd/v17/i5/p371
|
Статистика просмотров: |
Страница аннотации: | 134 |
|