|
Эта публикация цитируется в 5 научных статьях (всего в 5 статьях)
Local Integrability of Poincaré – Dulac Normal Forms
Shogo Yamanaka Department of Applied Mathematics and Physics,
Graduate School of Informatics, Kyoto University,
Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
Аннотация:
We consider dynamical systems in Poincaré-Dulac normal form having an equilibrium at the origin, and give a sufficient condition for them to be integrable, and prove that it is necessary for their special integrability under some condition. Moreover, we show that they are integrable if their resonance degrees are 0 or 1 and that they may be nonintegrable if their resonance degrees are greater than 1, as in Birkhoff normal forms for Hamiltonian systems. We demonstrate the theoretical results for a normal form appearing in the codimension-two fold-Hopf bifurcation.
Ключевые слова:
Poincaré-Dulac normal form, integrability, dynamical system.
Поступила в редакцию: 17.05.2018 Принята в печать: 26.09.2018
Образец цитирования:
Shogo Yamanaka, “Local Integrability of Poincaré – Dulac Normal Forms”, Regul. Chaotic Dyn., 23:7-8 (2018), 933–947
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd375 https://www.mathnet.ru/rus/rcd/v23/i7/p933
|
Статистика просмотров: |
Страница аннотации: | 156 | Список литературы: | 34 |
|