|
Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)
Integrable Nonsmooth Nonholonomic Dynamics of a Rubber Wheel with Sharp Edges
Alexander A. Kilin, Elena N. Pivovarova Steklov Mathematical Institute, Russian Academy of Sciences,
ul. Gubkina 8, Moscow, 119991 Russia
Аннотация:
This paper is concerned with the dynamics of a wheel with sharp edges moving on a horizontal plane without slipping and rotation about the vertical (nonholonomic rubber model). The wheel is a body of revolution and has the form of a ball symmetrically truncated on both sides. This problem is described by a system of differential equations with a discontinuous right-hand side. It is shown that this system is integrable and reduces to quadratures. Partial solutions are found which correspond to fixed points of the reduced system. A bifurcation analysis and a classification of possible types of the wheel’s motion depending on the system parameters are presented.
Ключевые слова:
integrable system, system with a discontinuous right-hand side, nonholonomic constraint, bifurcation diagram, body of revolution, sharp edge, wheel, rubber model.
Поступила в редакцию: 12.10.2018 Принята в печать: 03.12.2018
Образец цитирования:
Alexander A. Kilin, Elena N. Pivovarova, “Integrable Nonsmooth Nonholonomic Dynamics of a Rubber Wheel with Sharp Edges”, Regul. Chaotic Dyn., 23:7-8 (2018), 887–907
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd373 https://www.mathnet.ru/rus/rcd/v23/i7/p887
|
Статистика просмотров: |
Страница аннотации: | 185 | Список литературы: | 29 |
|