|
On Constructing Simple Examples of Three-dimensional Flows with Multiple Heteroclinic Cycles
Evgeny A. Grines, Grigory V. Osipov Department of Control Theory and System Dynamics, Nizhni Novgorod State University, ul. Gagarina 23, Nizhni Novgorod, 606950 Russia
Аннотация:
In this work we suggest a simple method for constructing $G$-equivariant systems of ODEs in $\mathbb{R}^3$ (i.e., systems whose trajectories are invariant under the action of this group on $\mathbb{R}^3$) that possess multiple disjoint heteroclinic networks. Heteroclinic networks under consideration consist of saddle equilibria that belong to coordinate axes and one-dimensional separatrices connecting them. We require these separatrices to lie on coordinate planes. We also assume the action of $G$ on $\mathbb{R}^3$ to be generated by cyclic permutation of coordinate variables and reflection with respect to one of the coordinate planes. As an example, we provide a step-by-step construction of three-dimensional flow with two disjoint heteroclinic networks. Also, we present a sketch of global dynamics analysis for the minimal example.
Ключевые слова:
heteroclinic cycle, heteroclinic network.
Поступила в редакцию: 13.10.2015 Принята в печать: 02.11.2015
Образец цитирования:
Evgeny A. Grines, Grigory V. Osipov, “On Constructing Simple Examples of Three-dimensional Flows with Multiple Heteroclinic Cycles”, Regul. Chaotic Dyn., 20:6 (2015), 679–690
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd37 https://www.mathnet.ru/rus/rcd/v20/i6/p679
|
Статистика просмотров: |
Страница аннотации: | 191 | Список литературы: | 53 |
|