|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
A New Proof of the Existence of Embedded Surfaces with Anosov Geodesic Flow
Victor Donnaya, Daniel Visscherb a Bryn Mawr College, Bryn Mawr, Pennsylvania, USA
b Ithaca College, Ithaca, New York, USA
Аннотация:
We give a new proof of the existence of compact surfaces embedded in $\mathbb{R}^3$ with Anosov geodesic flows. This proof starts with a noncompact model surface whose geodesic flow is shown to be Anosov using a uniformly strictly invariant cone condition. Using a sequence of explicit maps based on the standard torus embedding, we produce compact embedded surfaces that can be seen as small perturbations of the Anosov model system and hence are themselves Anosov.
Ключевые слова:
geodesic flow, embedded surfaces, Anosov flow, cone fields.
Поступила в редакцию: 03.08.2018 Принята в печать: 12.09.2018
Образец цитирования:
Victor Donnay, Daniel Visscher, “A New Proof of the Existence of Embedded Surfaces with Anosov Geodesic Flow”, Regul. Chaotic Dyn., 23:6 (2018), 685–694
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd359 https://www.mathnet.ru/rus/rcd/v23/i6/p685
|
|