|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Moser’s Quadratic, Symplectic Map
Arnd Bäckerab, James D. Meissc a Technische Universität Dresden, Institut für Theoretische Physik and Center for Dynamics, 01062 Dresden, Germany
b Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, 01187 Dresden, Germany
c Department of Applied Mathematics, University of Colorado, Boulder, CO 80309-0526, USA
Аннотация:
In 1994, Jürgen Moser generalized Hénon’s area-preserving quadratic map to obtain a normal form for the family of four-dimensional, quadratic, symplectic maps. This map has at most four isolated fixed points. We show that the bounded dynamics of Moser’s six parameter family is organized by a codimension-three bifurcation, which we call a quadfurcation, that can create all four fixed points from none.
The bounded dynamics is typically associated with Cantor families of invariant tori around fixed points that are doubly elliptic. For Moser’s map there can be two such fixed points: this structure is not what one would expect from dynamics near the cross product of a pair of uncoupled Hénon maps, where there is at most one doubly elliptic point. We visualize the dynamics by escape time plots on 2D planes through the phase space and by 3D slices through the tori.
Ключевые слова:
Hénon map, symplectic maps, saddle-center bifurcation, Krein bifurcation, invariant tori.
Поступила в редакцию: 22.08.2018 Принята в печать: 12.09.2018
Образец цитирования:
Arnd Bäcker, James D. Meiss, “Moser’s Quadratic, Symplectic Map”, Regul. Chaotic Dyn., 23:6 (2018), 654–664
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd357 https://www.mathnet.ru/rus/rcd/v23/i6/p654
|
|