Regular and Chaotic Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Regul. Chaotic Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Regular and Chaotic Dynamics, 2012, том 17, выпуск 6, страницы 512–532
DOI: https://doi.org/10.1134/S1560354712060044
(Mi rcd351)
 

Эта публикация цитируется в 56 научных статьях (всего в 56 статьях)

Dynamical Phenomena Occurring due to Phase Volume Compression in Nonholonomic Model of the Rattleback

Alexey V. Borisova, Alexey Yu. Jalnineab, Sergey P. Kuznetsovab, Igor R. Sataevb, Yulia V. Sedovaab

a Institute of Computer Science, Udmurt State University, Universitetskaya 1, Izhevsk, 426034, Russia
b Saratov Branch of Kotel’nikov’s Institute of Radio-Engineering and Electronics of RAS, Zelenaya 38, Saratov, 410019, Russia
Аннотация: We study numerically the dynamics of the rattleback, a rigid body with a convex surface on a rough horizontal plane, in dependence on the parameters, applying methods used earlier for treatment of dissipative dynamical systems, and adapted here for the nonholonomic model. Charts of dynamical regimes on the parameter plane of the total mechanical energy and the angle between the geometric and dynamic principal axes of the rigid body are presented. Characteristic structures in the parameter space, previously observed only for dissipative systems, are revealed. A method for calculating the full spectrum of Lyapunov exponents is developed and implemented. Analysis of the Lyapunov exponents of the nonholonomic model reveals two classes of chaotic regimes. For the model reduced to a 3D map, the first one corresponds to a strange attractor with one positive and two negative Lyapunov exponents, and the second to the chaotic dynamics of quasi-conservative type, when positive and negative Lyapunov exponents are close in magnitude, and the remaining exponent is close to zero. The transition to chaos through a sequence of period-doubling bifurcations relating to the Feigenbaum universality class is illustrated. Several examples of strange attractors are considered in detail. In particular, phase portraits as well as the Lyapunov exponents, the Fourier spectra, and fractal dimensions are presented.
Ключевые слова: rattleback, rigid body dynamics, nonholonomic mechanics, strange attractor, Lyapunov exponents, bifurcation, fractal dimension.
Финансовая поддержка Номер гранта
Министерство образования и науки Российской Федерации 11.G34.31.0039
We thank A.P. Kuznetsov for useful discussions. The work was carried out as part of research at the Udmurt State University within the framework of the Program of Government of the Russian Federation for state support of scientific research carried out under supervision of leading scientists at Russian institutions of higher professional education (contract No 11.G34.31.0039).
Поступила в редакцию: 09.09.2012
Принята в печать: 06.09.2012
Реферативные базы данных:
Тип публикации: Статья
MSC: 74F10, 93D20
Язык публикации: английский
Образец цитирования: Alexey V. Borisov, Alexey Yu. Jalnine, Sergey P. Kuznetsov, Igor R. Sataev, Yulia V. Sedova, “Dynamical Phenomena Occurring due to Phase Volume Compression in Nonholonomic Model of the Rattleback”, Regul. Chaotic Dyn., 17:6 (2012), 512–532
Цитирование в формате AMSBIB
\RBibitem{BorJalKuz12}
\by Alexey V.~Borisov, Alexey Yu.~Jalnine, Sergey P.~Kuznetsov, Igor R.~Sataev, Yulia V.~Sedova
\paper Dynamical Phenomena Occurring due to Phase Volume Compression in Nonholonomic Model of the Rattleback
\jour Regul. Chaotic Dyn.
\yr 2012
\vol 17
\issue 6
\pages 512--532
\mathnet{http://mi.mathnet.ru/rcd351}
\crossref{https://doi.org/10.1134/S1560354712060044}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3001098}
\zmath{https://zbmath.org/?q=an:1263.74021}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012RCD....17..512B}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/rcd351
  • https://www.mathnet.ru/rus/rcd/v17/i6/p512
  • Эта публикация цитируется в следующих 56 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Статистика просмотров:
    Страница аннотации:215
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024