|
Эта публикация цитируется в 37 научных статьях (всего в 37 статьях)
Rolling of a Ball without Spinning on a Plane: the Absence of an Invariant Measure in a System with a Complete Set of Integrals
Alexey V. Bolsinovab, Alexey V. Borisovb, Ivan S. Mamaevb a School of Mathematics, Loughborough University, Loughborough, Leicestershire, UK
b Institute of Computer Science, Udmurt State University, Izhevsk, Russia
Аннотация:
In the paper we consider a system of a ball that rolls without slipping on a plane. The ball is assumed to be inhomogeneous and its center of mass does not necessarily coincide with its geometric center. We have proved that the governing equations can be recast into a system of six ODEs that admits four integrals of motion. Thus, the phase space of the system is foliated by invariant 2-tori; moreover, this foliation is equivalent to the Liouville foliation encountered in the case of Euler of the rigid body dynamics. However, the system cannot be solved in terms of quadratures because there is no invariant measure which we proved by finding limit cycles.
Ключевые слова:
non-holonomic constraint, Liouville foliation, invariant torus, invariant measure,
integrability.
Поступила в редакцию: 04.08.2012 Принята в печать: 19.10.2012
Образец цитирования:
Alexey V. Bolsinov, Alexey V. Borisov, Ivan S. Mamaev, “Rolling of a Ball without Spinning on a Plane: the Absence of an Invariant Measure in a System with a Complete Set of Integrals”, Regul. Chaotic Dyn., 17:6 (2012), 571–579
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd350 https://www.mathnet.ru/rus/rcd/v17/i6/p571
|
Статистика просмотров: |
Страница аннотации: | 186 |
|