|
Эта публикация цитируется в 9 научных статьях (всего в 9 статьях)
Choreographies in the n-vortex Problem
Renato C. Callejaa, Eusebius J. Doedelb, Carlos García-Azpeitiac a IIMAS, Universidad Nacional Autónoma de México, Apdo. Postal 20-726, C.P. 01000, México D.F., México
b Concordia University, 1455 Boulevard De Maisonneuve West, Montreal, Quebec, Canada, H3G 1M8
c Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior S/N, C.P. 04510, Ciudad Universitaria, CDMX. México
Аннотация:
We consider the equations of motion of $n$ vortices of equal circulation in the plane, in a disk and on a sphere. The vortices form a polygonal equilibrium in a rotating frame of reference. We use numerical continuation in a boundary value setting to determine the Lyapunov families of periodic orbits that arise from the polygonal relative equilibrium. When the frequency of a Lyapunov orbit and the frequency of the rotating frame have a rational relationship, the orbit is also periodic in the inertial frame. A dense set of Lyapunov orbits, with frequencies satisfying a Diophantine equation, corresponds to choreographies of $n$ vortices. We include numerical results for all cases, for various values of $n$, and we provide key details on the computational approach.
Ключевые слова:
$n$-vortex problem, choreographies, continuation methods.
Поступила в редакцию: 15.08.2018 Принята в печать: 30.08.2018
Образец цитирования:
Renato C. Calleja, Eusebius J. Doedel, Carlos García-Azpeitia, “Choreographies in the n-vortex Problem”, Regul. Chaotic Dyn., 23:5 (2018), 595–612
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd348 https://www.mathnet.ru/rus/rcd/v23/i5/p595
|
Статистика просмотров: |
Страница аннотации: | 157 | Список литературы: | 33 |
|